Stereocontrolled Synthesis of the Northern Part of Potent Proteasome Inhibitor TMC-95A

LETTERS 2001 Vol. 3, No. 18 ²⁸⁶³-**²⁸⁶⁵**

ORGANIC

Masayuki Inoue, Hidetomo Furuyama, Hayato Sakazaki, and Masahiro Hirama*

Department of Chemistry, Graduate School of Science, Tohoku University, and *CREST, Japan Science and Technology Corporation (JST), Sendai 980-8578, Japan*

hirama@ykbsc.chem.tohoku.ac.jp

Received June 20, 2001

ABSTRACT

A protected version of the northern part of TMC-95A, a potent and selective proteasome inhibitor, was synthesized with full stereochemical control. Highlights of this synthesis include (i) a (*Z***)-selective Mizoroki**−**Heck reaction to construct the oxyindole portion, (ii) a diastereoselective epoxidation, (iii) a 6-endo selective epoxide opening by Boc carbonyl group to establish the stereochemistry of C6, and (iv) a 1,3-elimination reaction of the L-***allo***-threonine derivative under Mitsunobu conditions to afford the (***Z***)-1-propenylamine.**

TMC-95A (**1**, Scheme 1) has been isolated from the fermentation broth of *Apiospora montagnei* Sacc. TC 1093,

which was derived from soil samples.¹ Despite the structural dissimilarity between **1** and other known inhibitors such as lactacystin,² epoxomicin,³ other TMC series,⁴ and peptidederived molecules,⁵ studies have shown that **1** can specifically inhibit 20S proteasome,^{1b} the catalytic core of proteasome.6 Thus, **1** may provide a unique insight into

(2) (a) Omura, S.; Fujimoto, T.; Otoguro, K.; Matsuzaki, K.; Moriguchi, R.; Tanaka, H.; Sasaki, Y. *J. Antibiot*. **1991**, *44*, 113. (b) Fenteany, G.; Schreiber, S. L. *J. Biol. Chem*. **1998**, *273*, 8545 and references therein.

(3) (a) Hanada, M.; Sugawara, K.; Kaneta, K.; Toda, S.; Nishiyama, Y.; Tomita, K.; Yamamoto, H.; Konishi, M.; Oki, T. *J. Antibiot*. **1992**, *45*, 1746. (b) Groll, M.; Kim, K. B.; Kairies, N.; Huber, R.; Crews, C. M. *J. Am. Chem. Soc*. **2000**, *122*, 1237 and references therein.

(4) TMC-86A, B and TMC-96: (a) Koguchi, Y.; Kohno, J.; Suzuki, S. i.; Nishio, M.; Takahashi, K.; Ohnuki, T.; Komatsubara, S. *J. Antibiot*. **1999**, *52*, 1069. (b) Koguchi, Y.; Kohno, J.; Suzuki, S.-i.; Nishio, M.; Takahashi, K.; Ohnuki, T.; Komatsubara, S. *J. Antibiot.* **2000**, *53*, 63. TMC-89A and B: (c) Koguchi, Y.; Nishio, M.; Suzuki, S.-i.; Takahashi, K.; Ohnuki, T.; Komatsubara, S. *J. Antibiot*. **2000**, *53*, 967.

(5) For a recent review on proteasome inhibitors, see: Myung, J.; Kim, K. B.; Crews, C. M. *Med. Res. Re*V. **²⁰⁰¹**, *²¹*, 245.

(6) For reviews on the biology of proteasomes, see: (a) Tanaka, K. *J. Biochem*. **1998**, *123*, 195. (b) Ciechanover, A. *EMBO J.* **1998**, *17*, 7151.

^{(1) (}a) Kohno, J.; Koguchi, Y.; Nishio, M.; Nakao, K.; Kuroda, M.; Shimizu, R.; Ohnuki, T.; Komatsubara, S. *J. Org. Chem.* **2000**, *65*, 990. (b) Koguchi, Y.; Kohno, J.; Nishio, M.; Takahashi, K.; Okuda, T.; Ohnuki, T.; Komatsubara, S. *J. Antibiot*. **2000**, *53*, 105.

understanding the detailed biological function of proteasomes. Furthermore, proteasomes play important roles in the activation of $NF - \kappa B^7$ and the processing of histocompatibility complex (MHC) class I ligands,⁸ both of which are involved in mounting inflammatory immune responses, thus suggesting the use of TMC-95A and its analogues as potential antiinflammatory agents for treating autoimmune diseases. Notable structural features of **1** are the axially chiral biaryl group, the highly oxidized tryptophan, and the (*Z*)-1 propenylamine in the macrocyclic matrix. The biological importance, as well as the unique architecture, prompted us to undertake the total synthesis of **1**. ⁹ Here we report the stereocontrolled synthesis of a protected version of the northern part of **1**.

As outlined in Scheme 1, the structure of **1** can be retrosynthetically divided into two fragments that could be reassembled to the macrocyclic structure by a peptide bond formation and a Pd(0)-catalyzed biaryl coupling. $9a-c,10$ The northern part can be further dissected so that the (*Z*)-1 propenylamine portion could be prepared by the decarboxylative 1,3-elimination of carboxylate **2**. The oxidized tryptophan moiety could be synthesized by the oxidation of **3**, which in turn could be prepared by an intramolecular Mizoroki-Heck reaction of dibromide 4.¹¹
As shown in Sahama 2. DIP AL reduction

As shown in Scheme 2, DIBAL reduction followed by Wittig reaction of a known ester **5**, which was derived from D-serine,¹² afforded α , β -unsaturated ester 6 in 71% overall yield.13 Amidation of the ester **6** with 2,6-dibromoaniline in the presence of Me₃Al resulted in $7(59\% \text{ yield})$,¹⁴ followed by protection of the N22-amide with a Boc group to produce **8** in 88% yield. After numerous conditions were screened, intramolecular Mizoroki-Heck reaction of **⁸** was reliably and reproducibly carried out at room temperature,¹⁵ employing "ligandless" conditions¹⁶ that involved a catalytic amount of $Pd_2(dba)$ ₃ in the presence of Et₃N, to afford the trisubstituted olefin **9** in 86% yield $(Z:E > 20:1).^{17}$

(7) Palombella, V. J.; Rando, O. J.; Goldberg, A. L. Maniatis, T. *Cell* **1994**, *78*, 773.

(9) For synthetic studies on TMC-95 from other laboratories, see: (a) Lin, S.; Danishefsky, S. J. *Angew. Chem., Int. Ed*. **2001**, *40*, 1967. (b) Albrecht, B. K.; Williams, R. M. *Tetrahedron Lett*. **2001**, *42*, 2755. (c) Ma, D.; Wu, Q. *Tetrahedron Lett*. **2001**, *42*, 5279. (d) Ma, D.; Wu, Q. *Tetrahedron Lett*. **2000**, *41*, 9089.

(10) For recent reviews on biaryl synthesis, see: (a) Lloyd-Williams, P.; Giralt, E. *Chem. Soc. Re*V. **²⁰⁰¹**, *³⁰*, 145. (b) Stanforth, S. P. *Tetrahedron* **1998**, *54*, 263.

(11) For excellent reviews on Mizoroki-Heck reactions, see: (a) Link, J. T.; Overman, L. E. Intramolecular Heck Reactions in Natural Product Chemistry. In *Metal-catalyzed Cross-coupling Reactions*; Diedrich, F., Stang, P. J., Eds.; Wiley-VCH Verlag GmbH: Weihheim, 1998; pp 231–
269 (b) Beletskaya I P : Chenrakov A V *Chem Rev* 2000, 100 3009 269. (b) Beletskaya, I. P.; Cheprakov, A. V. *Chem. Re*V*.* **²⁰⁰⁰**, *¹⁰⁰*, 3009. (c) de Meijere, A.; Meyer, F. E. *Angew. Chem., Int. Ed*. *Engl*. **1994**, *33*, 2379.

(12) (a) Garner, P.; Park, J. M. *J. Org. Chem*. **1987**, *52*, 2361. (b) Garner, P.; Park, J. M. *Org. Synth*. **1992**, *70*, 18.

(13) The numbering of compounds in this paper corresponds to that of TMC-95A.

(16) Madin, A.; Overman, L. E. *Tetrahedron Lett*. **1992**, *33*, 4859.

 a (a) DIBAL, toluene, -78 °C; (b) Ph₃P=CH₂CO₂Me, CH₂Cl₂, 71% (2 steps); (c) 2,6-dibromoaniline, Me3Al, toluene; then **6**, 0 $^{\circ}$ C to rt, 59%; (d) (Boc)₂O, Et₃N, DMAP, CH₂Cl₂, rt, 88%; (e) $Pd_2(dba)_3$ ^{*}CHCl₃ (0.2 equiv), Et₃N, THF-NMP (1:1), rt, 86%; (f) DMDO, CH₂Cl₂, rt; (g) BF₃**·**Et₂O (1.5 equiv), CH₂Cl₂, -78 to 0 $^{\circ}$ C, 87% (2 steps); (h) (+)-MTPACl, Et₃N, DMAP, CH₂Cl₂, rt, 98%; (i) BzCl, Et₃N, DMAP, CH₂Cl₂, rt, 83%.

As shown in Scheme 3, the (*Z*)-selectivity of this facile intramolecular cyclization can be explained by the *syn*insertion of the alkyl palladium into (E) -olefin $(15 \rightarrow 16)$ and/or 17), followed by bond rotation $(16 \rightarrow 18 \text{ and/or } 17)$ \rightarrow 19), and *syn*-elimination of the C6-hydride to provide predominantly (*Z*)-oxyindole **9** (Scheme 3). The bulky Boc group protecting the N22-amide of **9** can explain the lack of further Pd(0)-insertion into the C1-bromide of **9**, which would cause undesirable side reactions, and maintain the catalytic cycle.18

Having secured the route to the oxyindole 9, the α , β unsaturated olefin was oxidized using 3,3-dimethyldioxirane (DMDO),19 to yield epoxide **10** as a single diastereomer (Scheme 2). Interestingly, we discovered that activation of

⁽⁸⁾ Rock, K. L.; Gramm, C.; Rothstein, L.; Clark, K.; Stein, R.; Dick, L.; Hwang, D.; Goldberg, A. L. *Cell* **1994**, *78*, 761.

^{(14) (}a) Lipton, M. F.; Basha, A.; Weinreb, S. M.*Org. Synth*. **1980**, *59*, 49. (b) Overman, L. E.; Paone, D. V.; Stearns, B. A. *J. Am. Chem. Soc*. **1999**, *121*, 7702.

⁽¹⁵⁾ Reaction temperature is crucial for the regioselectivity of this cyclization. For instance, the *E*/*Z* ratio of **9** was decreased to 3/1 when the reaction was conducted at 50 °C.

⁽¹⁷⁾ While this paper was in preparation, we noticed that Lin and Danishefsky (see ref 9a) planned a similar route to this involving Heck cyclization of a closely related substrate.

⁽¹⁸⁾ Macor, J. E.; Ogilvie, R. J.; Wythes, M. J. *Tetrahedron Lett*. **1996**, *37*, 4289.

⁽¹⁹⁾ Danishefsky, S. J.; Bilodeau, M. T. *Angew. Chem., Int. Ed. Engl*. **1996**, *35*, 1380.

the epoxide of 10 with BF_3 ⁻ Et_2O selectively provided a sixmembered carbamate **12** with a concomitant loss of the *tert*butyl group in 87% yield (2 steps).²⁰ The observed selectivity was reasoned that, because of the electronic assistance of the aromatic group, the C6-O bond of **¹¹** would be more susceptible to cleavage than the C7-O bond. The stereostructure of **12** was unambiguously assigned using the coupling constant $(J_{H7,H8} = 10.0 \text{ Hz})$ and the observed NOE between H4 and H7. The results indicate that not only did the epoxidation selectively occur from the opposite side of the C8-NRBoc group of **⁹**, but the resulting epoxide in **¹⁰** was opened via an S_N2 pathway. The enantiomeric excess of **12** was calculated to be 94% after derivatization to its (+)-MTPA ester **¹³**. For further synthetic manipulations, the secondary alcohol of **12** was protected as its benzoate ester to furnish **14** in 83% yield.

Before building the (*Z*)-1-propenylamine moiety, deprotection and oxidation of the C25-hydroxyl were necessary (Scheme 4). Thus, treatment of **14** in the presence of a catalytic amount of TfOH in CF_3CH_2OH simultaneously removed the acetonide and Boc groups and generated the desired alcohol 20 in 64% yield.²¹ Oxidation of the alcohol 20 using catalytic $CrO₃$ and $H₅IO₆$ as a reoxidant provided carboxylic acid **21**, ²² which was then coupled with L-*allo*threonine methyl ester **22** by the action of EDC and HOBt, resulting in amide **23** (60%, 2 steps). Subsequent saponification of methyl ester 23 led to α -alkoxy carboxylic acid 24. Upon treatment of 24 with Mitsunobu conditions (Ph₃P,

^{*a*} (a) TfOH (0.5 equiv), CF₃CH₂OH, 0 °C to rt, 64%; (b) CrO₃ (0.1 equiv), H_5IO_6 , wet MeCN, 0 °C; (c) 22 (1.5 equiv), EDC, HOBt, NMM, DMF, $0 \,^{\circ}\text{C}$ to rt, 60% (2 steps); (d) LiOH \cdot H₂O, THF-H₂O (1:1), 0 °C; (e) DEAD, PPh₃, THF, -78 °C to rt, 40% (2 steps).

DEAD), the decarboxylative 1,3-elimination proceeded smoothly,²³ presumably through 25, to yield the protected northern part of TMC-95A (26) in 40% yield (2 steps) .²⁴

In conclusion, we have attained a highly stereocontrolled synthesis of **²⁶** through (i) (*Z*)-selective Mizoroki-Heck reaction of dibromide **8** to construct the oxyindole portion, (ii) a diastereoselective epoxidation procedure $(9 \rightarrow 10)$, (iii) a 6-endo selective epoxide ring-opening reaction to establish the stereochemistry of C6 stereocenter $(10 \rightarrow 12)$, and (iv) a mild 1,3-elimination reaction of L-*allo*-threonine to build the (Z) -1-propenylamine $(24 \rightarrow 26)$. Further studies directed toward the total synthesis of TMC-95A, including derivatization of **26** to a suitable form for coupling with a southern part, are currently underway in our laboratory.

OL016303V

⁽²⁰⁾ For a related approach for forming a six-membered carbamate, see: Urabe, H.; Aoyama, Y.; Sato, F. *Tetrahedron* **1992**, *48*, 5639.

^{(21) (}a) Kobayashi, S.; Reddy, R. S.; Sugiura, Y.; Sasaki, D.; Miyagawa, N.; Hirama, M. *J. Am. Chem. Soc.* **2001**, *123*, 2887. (b) Holcombe, J. L.; Livinghouse, T. *J. Org. Chem*. **1986**, *51*, 111.

⁽²²⁾ Zhao, M.; Li, J.; Song, Z.; Desmond, R.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J. *Tetrahedron Lett*. **1998**, *39*, 5323.

⁽²³⁾ Pansare, S. V.; Vederas, J. C. *J. Org. Chem*. **1989**, *54*, 2311. (24) Physical data of **26**: $[\alpha]^{25}D + 86.0$ (*c* 0.62, CHCl₃); IR (film) 3280, 1741, 1672, 1621, 1264, 1107, 708 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) *δ* 1.08 (3H, dd, $J = 7.5$, 1.5 Hz, H29), 4.72 (1H, dq, $J = 9.0$, 7.5 Hz, H28), 5.31 (1H, d, $J = 9.5$ Hz, H8), 6.02 (1H, d, $J = 9.5$ Hz, H7), 6.43 (1H, ddd, $J = 10.5, 9.0, 1.5$ Hz, H27), 6.96 (1H, s, amide-NH), 6.99 (1H, dd, $J =$ 8.5, 7.5 Hz, H3), 7.36 (1H, d *J* = 8.5 Hz, H4), 7.44 (2H, dd, *J* = 8.0, 7.5 Hz, Bz), 7.50 (1H, d, *J* = 7.5 Hz, H2), 7.59 (1H, t, *J* = 7.5 Hz, Bz), 7.93 Hz, Bz), 7.50 (1H, d, *J* = 7.5 Hz, H2), 7.59 (1H, t, *J* = 7.5 Hz, Bz), 7.93
(2H, d, *J* = 7.5 Hz, Bz), 8.83 (1H, d, *J* = 10.5 Hz, amide-NH), 9.57 (1H, (2H, d, $J = 7.5$ Hz, Bz), 8.83 (1H, d, $J = 10.5$ Hz, amide-NH), 9.57 (1H, s, amide-NH)^{, 13}C NMR (125 MHz, CDCl₂) δ 10.7, 52.5, 66.5, 80.7, 103.9 s, amide-NH); ¹³C NMR (125 MHz, CDCl₃) δ 10.7, 52.5, 66.5, 80.7, 103.9, 109.9, 120.8, 124.6, 125.1, 125.2, 127.8, 128.8, 130.0, 134.3, 134.6, 141.2, 151.4, 163.9, 165.2, 173.6; MALDI-TOF MS calcd for C₂₂H₁₉BrN₃O₆ [M $+$ H⁺] 500.0457, found 500.0433.